Characterizing proteolytic cleavage site activity using bio-basis function neural networks

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterizing proteolytic cleavage site activity using bio-basis function neural networks

MOTIVATION In protein chemistry, proteomics and biopharmaceutical development, there is a desire to know not only where a protein is cleaved by a protease, but also the susceptibility of its cleavage sites. The current tools for proteolytic cleavage prediction have often relied purely on regular expressions, or involve models that do not represent biological data well. RESULTS A novel methodo...

متن کامل

Reduced Bio-basis Function Neural Networks for Protease Cleavage Site Prediction

This paper presents a new neural learning algorithm for protease cleavage site prediction. The basic idea is to replace the radial basis function used in radial basis function neural networks by a so-called bio-basis function using amino acid similarity matrices. Mutual information is used to select bio-bases and a corresponding selection algorithm is developed. The algorithm has been applied t...

متن کامل

Prediction of caspase cleavage sites using Bayesian bio-basis function neural networks

MOTIVATION Apoptosis has drawn the attention of researchers because of its importance in treating some diseases through finding a proper way to block or slow down the apoptosis process. Having understood that caspase cleavage is the key to apoptosis, we find novel methods or algorithms are essential for studying the specificity of caspase cleavage activity and this helps the effective drug desi...

متن کامل

Long-Term Peak Demand Forecasting by Using Radial Basis Function Neural Networks

Prediction of peak loads in Iran up to year 2011 is discussed using the Radial Basis Function Networks (RBFNs). In this study, total system load forecast reflecting the current and future trends is carried out for global grid of Iran. Predictions were done for target years 2007 to 2011 respectively. Unlike short-term load forecasting, long-term load forecasting is mainly affected by economy...

متن کامل

rodbar dam slope stability analysis using neural networks

در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bioinformatics

سال: 2003

ISSN: 1367-4803,1460-2059

DOI: 10.1093/bioinformatics/btg237